Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter

نویسندگان

  • Mithun K Mitra
  • Gautam I Menon
  • R Rajesh
چکیده

We study the inflated phase of two dimensional lattice polygons, both convex and column-convex, with fixed area A and variable perimeter, when a weight μ exp[−Jb] is associated to a polygon with perimeter t and b bends. The mean perimeter is calculated as a function of the fugacity μ and the bending rigidity J . In the limit μ → 0, the mean perimeter has the asymptotic behaviour 〈t〉/4 √ A ≃ 1−K(J)/(lnμ)2+O(μ/ lnμ). The constant K(J) is found to be the same for both types of polygons, suggesting that self-avoiding polygons may also exhibit the same asymptotic behaviour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Inflated Lattice Polygons

We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp[pA− Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we show that 〈A〉/Amax = 1−K(J)/p̃ 2 + O(ρ), where p̃ = pN ≫ 1, and ρ < 1. The constant K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons sh...

متن کامل

Convex lattice polygons of fixed area with perimeter-dependent weights.

We study fully convex polygons with a given area, and variable perimeter length on square and hexagonal lattices. We attach a weight tm to a convex polygon of perimeter m and show that the sum of weights of all polygons with a fixed area s varies as s(-theta(conv))eK(t)square root(s) for large s and t less than a critical threshold tc, where K(t) is a t-dependent constant, and theta(conv) is a ...

متن کامل

A method for the enumeration of various classes of column-convex polygons

2 Abstract. We present a new method that allows to enumerate various classes of column-convex polygons, according to their perimeter and their area. The rst step of this method leads to a functional equation which deenes implicitly the generating function of the class under consideration. The second step consists in solving this equation. We apply systematically our method to all the usual clas...

متن کامل

Limit distributions and scaling functions

We discuss the asymptotic behaviour of models of lattice polygons, mainly on the square lattice. In particular, we focus on limiting area laws in the uniform perimeter ensemble where, for fixed perimeter, each polygon of a given area occurs with the same probability. We relate limit distributions to the scaling behaviour of the associated perimeter and area generating functions, thereby providi...

متن کامل

On convex lattice polygons

Let II be a convex lattice polygon with b boundary points and c (5 1) interior points. We show that for any given a , the number b satisfies b 5 2e + 7 , and identify the polygons for which equality holds. A lattice polygon II is a simple polygon whose vertices are points of the integral lattice. We let A = 4(11) denote the area of II , b{U) the number of lattice points on the boundary of II , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010